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Abstract

We consider the problem of wavenumber selection for fully nonlinear, small{wavelength
G�ortler vortices in a curved channel ow. These type of G�ortler vortices were �rst considered
by Hall & Lakin (1988) for an external boundary layer ow. They proved particularly amenable
to asymptotic description, it was possible to consider vortices large enough so that the mean

ow correction driven by them is as large as the basic state, and this prompted us to consider
them in a curved channel ow as an initial application of the phase{equation approach to
G�ortler vortices. This involves the assumption that the phase variable of these G�ortler vortices

varies on slow spanwise and time scales, then an analysis of both inside and outside the core
region, to which vortex activity is restricted, leads to a system of partial di�erential equations
which we can solve numerically for the wavenumber. We consider in particular the e�ect on

the wavenumber of the outer channel wall varying on the same slow spanwise scale as the phase

variable.
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1 Introduction

Much innovative work was done during the 1980's on wavenumber selection, particularly

for convection problems. Attention turned towards selection mechanisms that relied on the

global physics and geometry of the system. The method developed is now referred to as the

`phase{equation' approach. Much of this work (see for instance Kramer et. al. 1982, Cross &

Newell 1984, Buell & Catton 1986 and the review article by Newell, Passot & Lega 1993) was

concerned with Rayleigh{B�enard convection problems although the ideas behind it had been

encountered earlier in the context of travelling wave instabilities (Whitham 1974 and Howard

& Kopell 1977).

Rayleigh{B�enard convection is a classical example for pattern forming transitions in nonequi-

librium systems. The spatially uniform conducting state becomes unstable to spatially periodic

time{independent rolls. The stability of these rolls had previously been studied by Galerkin
techniques which suggested that for a range of Rayleigh numbers (dependent on the Prandtl
number and wavenumber) these straight rolls are stable. However, in experiments large enough

to contain many rolls these solutions were usually not seen. Instead more complicated patterns
are common with curved rolls, roll dislocations and superimposed rolls present and sometimes
time independent states are not even reached. The presence of these complicated patterns was
attributed to factors such as the existence of orientational degeneracy, the observation that
rolls tend to align themselves normal to lateral boundaries and the fact that there is a band of

stable wavenumbers.
The `phase{equation' approach did much to explain and predict the complicated patterns

that are seen in experiments. For example, the dislocation of convection rolls is now fairly well
understood using the phase equation approach. The phase{equation approach assumes that
the phase is a function of slow (global) variables. All quantities are then expanded in terms of

a suitable small parameter and substituted into the governing equations. At leading order the
unmodulated equations of motion are recovered but at next order a linearised inhomogeneous
form of the leading order problem is obtained. In order for this inhomogeneous problem to have
a non{trivial solution a solvability condition must be satis�ed and it is this solvability condition
which gives an equation for the phase.

Recently these `phase{equation' ideas have begun to be applied to boundary layer prob-

lems. Hall (1994) has used the phase{equation methods to consider large amplitude Tollmien{

Schlichting waves in boundary layer ows. He considered asymptotically both large Reynolds
number ows and �nite Reynolds number ows (for the asymptotic suction pro�le). The re-

sults suggest that for both large and �nite Reynolds numbers a uniform wavetrain of Tollmien{
Schlichting waves will break down with either a singularity or a shock developing after a �nite

time. Here we shall use these phase{equation ideas to consider wavenumber selection for small{
wavelength G�ortler vortices in a curved channel ow.

Hall (1982) considered weakly nonlinear small{wavelength G�ortler vortices, in an external

boundary layer ow, and showed that this nonlinear interaction is not described by the Stuart{
Watson approach. Hall & Lakin (1988) followed up this work by looking at the fully nonlinear

interaction and they found that in the region of vortex activity the boundary layer ow is being
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forced by the vortex which is in turn driven by the boundary layer. Surprisingly they also

found that an asymptotic description could be obtained for this nonlinear interaction when the

vortices are of su�cient size that the mean ow correction driven by them is as large as the

basic state. This amenability to asymptotic description was one of the main reasons for making

an initial phase{equation study on this type of G�ortler vortices.

In the next section we shall consider the formulation of our problem. >From the previous

work of Hall & Lakin (1988) and Bassom (1989) we know that the vortices will be contained

within a core region. In x3 we consider asymptotically the ow within this core region. In

x4 we match the solutions from inside and outside the core region. In the process we derive

a system of partial di�erential equations involving the wavenumber. Then in x5 we consider

numerical solutions of the equations we have derived for a variety of di�erent geometries for

the outer channel wall. Finally in x6 we draw some conclusions from our numerical results and

consider how far we have progressed in providing a theoretical explanation for the non{uniform

patterns of vortices frequently observed in experiments (see Swearingen & Blackwelder 1987
and references therein) and also in computational studies (Guo & Finlay 1994).

2 Formulation of the Governing Equations

In this work we consider the ow of an incompressible viscous uid of density � and kinematic
viscosity � in a curved channel. The walls of the channel, with respect to the usual cylindrical
polar co{ordinates (r

0

, �
0

, z
0

), are given by r
0

= R and r
0

= R+ dq(~z) where d is a typical gap

width (see the next section for a discussion of the slow spanwise scale, ~z = �
7

2 z, on which the
function q varies). The non{dimensional co{ordinates (x; y; z) are de�ned by

x =
1

Re

R�
0

d
; y =

r
0

�R

d
; z =

z
0

d
; (2:1a; b; c)

where the Reynolds number Re = Vad=� and Va is the maximum azimuthal ow velocity.
The basic velocity and pressure �elds for this small gap limit (� = d=R� 1) take the form

(û; v̂; ŵ) = Va(u;Re
�1v;Re�1w) +O(�Va) ; p̂ = p ; (2:2)

and we con�ne our attention to the limit Re!1 with the G�ortler number G de�ned by

G = Re2� =
V 2
a d

3

R�2
; (2:3)

held �xed. We �nd that the Navier{Stokes equations for this problem are

@u

@x
+
@v

@y
+
@w

@z
= 0 ; (2:4a)

@2u

@y2
+
@2u

@z2
�

@u

@t
�

@p

@x
= u

@u

@x
+ v

@u

@y
+ w

@u

@z
; (2:4b)
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@2v

@y2
+
@2v

@z2
�
@v

@t
�

1

2
Gu2 �

@p

@y
= u

@v

@x
+ v

@v

@y
+ w

@v

@z
; (2:4c)

@2w

@y2
+
@2w

@z2
�

@w

@t
�

@p

@z
= u

@w

@x
+ v

@w

@y
+ w

@w

@z
: (2:4d)

We choose to concentrate on vortices with small, O(�), wavelengths. Previous work has

shown that such vortices exist at large, O(��4), G�ortler numbers. So we expand the G�ortler

number for this ow as

G = ��4(G0 + �G1 + � � �) ; (2:5)

and the mean ow quantities as

(u; v; w) = (u(y; ~z; ~t); �3v(y; ~z; ~t); ��
1

2w(y; ~z; ~t))

p = �2F (~z; ~t)x+ ��4p(y; ~z; ~t) : (2:6)

Again, see the next section for a discussion of the slow timescale, ~t = �3t. We �nd that vortex
activity is restricted to a core region and outside of this core substitution of (2.6) into the

governing equations, (2.4a-d), gives
@v

@y
= �

@w

@~z
; (2:7a)

@2u

@y2
= �2F ; (2:7b)

�
1

2
G0u

2 =
@p

@y
; (2:7c)

@2w

@y2
=

@p

@~z
; (2:7d)

subject to the boundary conditions

u = v = w = 0 at y = 0; q : (2:8)

3 Derivation of the Nonlinear Equations for G�ortler

Vortices in Curved Channel Flow

We now develop an asymptotic solution of the governing equations valid in the presence
of vortices which have small wavelengths. The previous work of Hall(1982), Hall & Lakin

(1988) and Bassom (1989) suggests that the vortices will be contained within a core region.

The ow�eld is therfore split up as shown in Figure 1 with the vortex activity con�ned to the
region between y1 and y2. The layers denoted by regions IIa,b are transition layers, of width
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O(�
2

3 ), required to smooth out the algebraically decaying vortices in region I. In region I the

appropriate expansions of u, v, w and p are

u = u0+�
1

2u1+�u2+ � � �+
�
�(U0E+c:c:)+�

3

2 (U1E+c:c:)+�2(U2E+c:c:)+ � � �
�
+ � � � ; (3:1a)

v = �3v0+�
7

2v1+�
4v2+� � �+

�
��1(V0E+c:c:)+��

1

2 (V1E+c:c:)+(V2E+c:c:)+� � �
�
+� � � ; (3:1b)

w = ��
1

2w0+w1+�
1

2w2+� � �+
�
(W0E+c:c:)+�

1

2 (W1E+c:c:)+�(W2E+c:c:)+� � �
�
+� � � ; (3:1c)

p = �2Fx+��4p0+�
�

7

2 p1+�
�3p2+� � �

+

�
��1(P0E + c:c:) + ��

1

2 (P1E + c:c:) + (P2E + c:c:) + � � �
�
+ � � � : (3:1d)

Mean ow terms (apart from the pressure gradient F ) are denoted by barred small letters and
vortex terms by capital letters. We assume that the mean ow quantities and disturbances are
all independent of x and the notation c:c: denotes the complex conjugate, whilst the exponential
E is given by

E = exp

�
i

�
9

2

�(~z; ~t))

�
; (3:2)

where
~z = �

7

2 z ; ~t = �3t ; (3:3)

and � is a phase variable. The slow z{scale is determinded by our requirement that @=@z � ��1

and also by balancing terms in the mean ow z{momentum equation. In this paper we have,
for convenience, �xed our attention on ~z = �

7

2 z although we could have considered ~z = �kz

where 3 < k < 4. Hall (1985) showed, in contrast to the two{dimensional case, that the G�ortler
disturbances applied to a three{dimensional ow are necessarily time dependent and hence
the inclusion of this slow time{scale which is necessary to provide a term for the consistency
condition at the second order of the fundamental equations (equation 3.13a). We write � =

i��
9

2 �(~z; ~t) so that @=@z! ik��1@=@� and @=@t! �i
��
3

2@=@� where the wavenumber k = �~z
and the frequency 
 = ��~t. The introduction of the wavenumber and frequency imply that we

must have a phase conservation equation, namely

@k

@~t
+
@


@~z
= 0 : (3:4)

Strictly, higher harmonics are also present in the expansions (3.1), but they do not a�ect our
calculation at the orders we shall be concerned with.

Substituting the expansions (3.1) into the governing equations we �nd that the leading order

fundamental equations give

V0y + ikW0 = 0 ; (3:5a)

k2U0 + u0yV0 = 0 ; (3:5b)

k2V0 +G0u0U0 = 0 ; (3:5c)
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k2W0 + ikP0 = 0 ; (3:5d)

and consistency of (3.5b) and (3.5c) implies that throughout the core

G0u0u0y = k4 ; (3:6a)

from which we can see that

u0 =
(2k4y + a(~z; ~t))

1

2

G
1

2

0

; (3:6b)

where a is an, as yet undeterminded, arbitrary function of ~z and ~t. At the leading order of the

mean ow we �nd that the governing equations give

v0y + w0~z = 0 ; (3:7a)

u0yy + 2F = V0U0y + V 0U0y + ikU0W 0 � ikU0W0 ; (3:7b)

1

2
G0u

2
0 + p0y = 0 ; (3:7c)

0 = V0W 0y + V 0W0y ; (3:7d)

where we have used a bar on the capital (vortex) terms to denote the complex conjugate of this
quantity. Using (3.5) to substitue in for U0 and W0 we �nd that (3.7b,d) give

u0yy + 2F = �
2

k2
@

@y

�
u0yV0V 0

�
; (3:8a)

0 =
@

@y

�
V0V 0y � V 0V0y

�
; (3:8b)

and these two equations de�ne the vortex function V0. >From (3.7c) we have

p0y = �
1

2
(2k4y + a) ; (3:9a)

and after integration with respect to y we have

p0 = �
1

2
(k4y2 + ay + c(~z; ~t)) : (3:9b)

The size of the vortex function V0 is now determinded by integrating (3.8a) to give

u0y + 2Fy +B(~z) = �
2

k2
u0yjV0j

2 : (3:10)

The function jV0j
2 cannot be negative so y1 and y2, which determine the edges of region I, must

satisfy (3.10) withV0 = 0. If we then eliminateB(~z) from the resulting two equations we obtain
the condition

k4

G
1

2

0 (2k
4y1 + a)

1

2

+ 2Fy1 =
k4

G
1

2

0 (2k
4y2 + a)

1

2

+ 2Fy2 : (3:11)
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This equation is obviously not su�cient to determine a, y1 and y2 so we are not yet able to

determine the location of the layers IIa,b.

At second order the fundamental equations give

V1y + ikW1 = 0 ; (3:12a)

k2U1 + u0yV1 = �u1yV0 � i(�
 + w0k)U0 ; (3:12b)

k2V1 +G0u0U1 = �G0u1U0 � i(�
+ w0k)V0 ; (3:12c)

k2W1 + ikP1 = �i(�
 + w0k)W0 ; (3:12d)

and consistency of (3.12b) and (3.12c) requires �rstly that

�
 + w0k = 0 ; (3:13a)

and secondly that
@

@y
(u0u1) = 0 : (3:13b)

Equation (3.13b), as we expect, de�nes the second order component of the streamwise mean

ow whilst (3.13a) provides an equation for the leading order component of the spanwise mean
ow. Note also that, since 
 and k are not functions of y, equation (3.13a) implies that w0y = 0.

We now need to determine the positions of the transition layers, IIa,b. The thickness of
these layers is determinded by a balance between di�usion across the layers and convection in
the streamwise direction. This balance shows the layers to be O(�

2

3 ) in depth and so we de�ne

in region IIa the O(1) variable

� =
(y � y2)

�
2

3

: (3:14)

We are led to make the expansions

u = (u00 + �
2

3u01 + �
4

3u02 + � � �) + �
1

2 (u10 + �
2

3u11 + �
4

3u12 + � � �) + � � �

+f�
4

3 (EU10 + c:c:) + �2(EU11 + c:c:) + � � �g+ � � � ; (3:15a)

v = �3(v00 + �
2

3v01 + �
4

3v02 + � � �) + �
7

2 (v10 + �
2

3v11 + �
4

3v12 + � � �) + � � �

+f��
2

3 (EV10 + c:c:) + (EV11 + c:c:) + � � �g+ � � � ; (3:15b)

w = ��
1

2 (w00 + �
2

3w01 + �
4

3w02 + � � �) + (w10 + �
2

3w11 + �
4

3w12 + � � �) + � � �

+f��
4

3 (EW10 + c:c:) + ��
2

3 (EW11 + c:c:) + � � �g+ � � � ; (3:15c)

p = �2Fx+��4(p00+�
2

3p01+�
4

3p02+� � �)+�
�

7

2 (p10+�
2

3p11+�
4

3p12+� � �)+� � �

+f��
4

3 (EP10 + c:c:) + ��
2

3 (EP11 + c:c:) + � � �g+ � � � ; (3:15d)

in this layer because we can see from (3.10) that jV0j
2 � y2 � y when y! y2�.
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Considering the solution of the governing equations in this layer we �nd that the fundamental

x{ and y{momentum equations give at O(��
2

3 ) and O(��
8

3 ) respectively

k2U10 + V10
@u01

@�
= 0 ; (3:16a)

k2V10 +G0u00U10 = 0 ; (3:16b)

whilst at O(1) and O(��2) of the same equations we obtain

k2U11 + V11
@u01

@�
=

@2U10

@�2
� V10

@u02

@�
; (3:17a)

k2V11 +G0u00U11 = 2
@2V10

@�2
�G0u01U10 : (3:17b)

Equations (3.16a,b) are always consistent but for (3.17a,b) to be consistent we require that

3k2
@2V10

@�2
+ k4

u01

u00
V10 +G0u00

@u02

@�
V10 = 0 : (3:18)

Looking at the mean ow x{momentum equation we �nd that at O(��
4

3 ), O(��
2

3 ) and O(1)

@2u00

@�2
= 0 ; (3:19a)

@2u01

@�2
= 0 ; (3:19b)

@2u02

@�2
+ 2F = V10

@U10

@�
+ V 10

@U10

@�
+ ikW 10U10 � ikW10U10 : (3:19c)

The solutions of (3.19a) and (3.19b) which match with the solutions in the core are

u00 =
(2k4y2 + a)

1

2

G
1

2

0

; (3:20a)

and

u01 =
k4�

G
1

2

0 (2k
4y2 + a)

1

2

; (3:20b)

whilst we �nd from (3.19c), after using the fundamental continuity and x{momentum equations

to substitute in for U10 and W10, that

@2u02

@�2
= �2F �

2k2

G
1

2

0 (2k
4y2 + a)

1

2

@jV10j
2

@�
; (3:21a)
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and integrating this with respect to � gives

@u02

@�
= �2F� �

2k2jV10j
2

G
1

2

0 (2k
4y2 + a)

1

2

+ f(~z) ; (3:21b)

where f is an arbitrary function of ~z and ~t which we do not need to know explicitly for our

purposes. If we now substitute (3.21b) back into equation (3.18) we �nd that

@2V10

@�2
+ �S(~z; ~t)V10 =

2

3
jV10j

2V10 + g(~z; ~t)V10 ; (3:22)

where

S(~z; ~t) =

"
k6

3(2k4y2 + a)
�

2FG
1

2

0 (2k
4y2 + a)

1

2

3k2

#
; (3:23a)

g(~z; ~t) = �
G

1

2

0 (2k
4y2 + a)

1

2

3k2
f : (3:23b)

Equation (3.22) is a particular form of the second Painlev�e transcendent and has been shown
by Hastings & McLeod (1980) to have a solution such that

S� !
2

3
jV01j

2 as � ! �1 ; jV01j ! 0 as � ! +1 : (3:24)

It follows that in layer IIa the fundamental terms decay to zero so that the �nite amplitude
G�ortler vortex is trapped above region IIIa. We note that a similar analysis for the higher
harmonics shows that these functions also decay exponentially to zero in IIa. However, the
mean ow is virtually unaltered by the presence of IIa, thus the early terms in the expansions

of the mean ow quantities in region IIa are simply obtained by expanding the mean ow in
region I in terms of �. This means that the mean ow in region IIIa must to zeroth order when
y! y2+ have u, uy, v, w, wy and p de�ned by the coreow solution evaluated with y = y2.

An identical analysis can be carried out in region IIb with similar results. Hence in both

region IIIa and IIIb there is only a mean velocity �eld. Therefore in the regions (0; y1) and

(y2; q) the equations (2.7a-d) hold and we must solve them subject to the boundary conditions
(2.8) and the matching conditions

u(yi) =
(2k4yi + a)

1

2

G
1

2

0

; uy(yi) =
k4

G
1

2

0 (2k
4yi + a)

1

2

; (3:25a; b)

w(yi) = 
=k ; wy(yi) = 0 ; (3:25c; d)

v(yi) = �yi(
=k)~z + b ; (3:25e)

p(yi) = �
1

2
(k4y2i + ayi + c) ; i = 1; 2 ; (3:25f)

along with the relationship between the positions y1 and y2 (equation 3.11).
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4 Derivation of the VortexWavenumber Evolution Equa-

tion

Above the core, in region IIIb, equation (2.7b) gives

@2u

@y2
= �2F (~z; ~t) ; (4:1)

and integrating this twice with respect to y gives, after we have applied the boundary condition

u = 0 at y = 0,
u = y(A� yF ) ; (4:2)

where A is an as yet undeterminded arbitrary function of ~z and ~t. Matching u and uy at y1
(see equations 3.25a,b) implies that

k4 = G0y1(A� y1F )(A� 2y1F ) ; (4:3)

a = �G0y
2
1(A� y1F )(A� 3y1F ) : (4:4)

Below the core equation (2.7b) again holds and integrating twice gives

u = �Fy2 + ay + b ;

whilst matching u and uy at y2 we �nd

a =
y

1

2

1 (A� y1F )
1

2 (A� 2y1F )

[2y2(A� 2y1F )� y1(A� 3y1F )]
1

2

+ 2Fy2 (4:5)

b = �Fy22 �
y2y

1

2

1 (A� y1F )
1

2 (A� 2y1F )

[2y2(A� 2y1F )� y1(A� 3y1F )]
1

2

+y
1

2

1 (A� y1F )
1

2 [2y2(A� 2y1F )� y1(A� 3y1F )]
1

2 : (4:6)

We must satisfy the boundary condition u = 0 at y = q and this implies that

0 = �Fq2+ aq + b ; (4:7)

and upon substituting in for a and b we have

0 = �F (q� y2)
2 +

(q � y2)y
1

2

1 (A� y1F )
1

2 (A� 2y1F )

[2y2(A� 2y1F )� y1(A� 3y1F )]
1

2

+y
1

2

1 (A� y1F )
1

2 [2y2(A� 2y1F )� y1(A� 3y1F )]
1

2 : (4:8)
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>From our working inside the core we have equation (3.11), the relationship between the po-

sitions y1 and y2, and after substituting in for k4 and a, using equations (4.3) and (4.4), this

becomes

(A� 2y2F ) =
y

1

2

1 (A� y1F )
1

2 (A� 2y1F )

[2y2(A� 2y1F )� y1(A� 3y1F )]
1

2

: (4:9)

We now have three equations (4.3, 4.8 and 4.9) with which we can determine A, y1 and y2 in

terms of k and F (assuming we know G0 and q).

Above the core the y{momentum equation is

@p

@y
= �

1

2
G0u

2 ; (4:10)

and after substituting for u and integrating we �nd that

p = �
1

2
G0

"
1

5
F 2y5 �

1

2
AFy4 +

1

3
A2y3

#
+Q(~z; ~t) ; (4:11)

where Q is an arbitrary function of ~z and ~t. Matching with the pressure in the core at y1 we
�nd that the constant c is given by

c = G0

"
6

5
F 2y51 �

3

2
AFy41 +

1

3
A2y31

#
� 2Q : (4:12)

Below the core we �nd that

p = �
1

2
G0

"
1

5
F 2y5 �

1

2
aFy4+

1

3
(a2 � 2bF )y3 + aby2 + b

2
y

#
+ c(~z; ~t) ; (4:13)

and matching with the pressure in the core at y2 we get

c =
1

2
G0

"
1

5
F 2y52�

1

2
aFy42+

1

3
(a2�2bF )y32+aby

2
2+b

2
y2�

6

5
F 2y51+

3

2
AFy41�

1

3
A2y31

�y1y2(A� y1F )fy2(A� 2y1F )� y1(A� 3y1F )g

#
+Q : (4:14)

The z{momentum equation in region IIIb is (2.7d) and integrating twice with respect to y

and using the boundary condition w = 0 at y = 0 we obtain

w = �
1

2
G0

"
1

210
fF 2g~zy

7 �
1

60
fAFg~zy

6 +
1

60
fA2g~zy

5

#
+

1

2
Q~zy

2 + C(~z; ~t)y ; (4:15)

where C is another arbitrary function of ~z and ~t. We know that the position of the upper edge

of the core occurs where @w=@y = 0 and this produces the condition

0 = �
1

2
G0

"
1

30
fF 2g~zy

6
1 �

1

10
fAFg~zy

5
1 +

1

12
fA2g~zy

4
1

#
+Q~zy1 + C : (4:16)
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From matching w at this upper edge of the core we obtain




k
= �

1

2
G0

"
1

210
fF 2g~zy

7
1 �

1

60
fAFg~zy

6
1 +

1

60
fA2g~zy

5
1

#
+

1

2
Q~zy

2
1 + Cy1 : (4:17)

Integrating (2.7d) in region IIIa twice gives

w = �
1

2
G0

"
1

210
fF 2g~zy

7 �
1

60
faFg~zy

6 +
1

60
fa2 � 2bFg~zy

5 +
1

12
fabg~zy

4 +
1

6
fb

2
g~zy

3

#

+
1

2
c~zy

2 + d(~z; ~t)y + e(~z; ~t) ; (4:18)

and matching @w=@y at y2 gives

d =
1

2
G0

"
1

30
fF 2g~zy

6
2�

1

10
faFg~zy

5
2+

1

12
fa2�2bFg~zy

4
2+

1

3
fabg~zy

3
2+

1

2
fb

2
g~zy

2
2

#
�c~zy2 ; (4:19)

whilst matching w gives

e =



k
+

1

2
G0

"
1

210
fF 2g~zy

7
2 �

1

60
faFg~zy

6
2 +

1

60
fa2 � 2bFg~zy

5
2

+
1

12
fabg~zy

4
2 +

1

6
fb

2
g~zy

3
2

#
�

1

2
c~zy

2
2 � dy2 : (4:20)

We must satisfy the boundary condition w = 0 at y = q and from equation (4.18) this implies
that

0 = �
1

2
G0

"
1

210
fF 2g~zq

7 �
1

60
faFg~zq

6 +
1

60
fa2 � 2bFg~zq

5

+
1

12
fabg~zq

4 +
1

6
fb

2
g~zq

3

#
+

1

2
c~zq

2 + dq + e : (4:21)

Finally we need to consider the continuity equation. Above the core we �nd, after integrating

(2.7a) and applying the boundary condition v = 0 at y = 0, that

v =
1

2
G0

"
1

1680
fF 2g~z~zy

8 �
1

420
fAFg~z~zy

7 +
1

360
fA2g~z~zy

6

#
�

1

6
Q~z~zy

3 �
1

2
C~zy

2 ; (4:22)

and matching v at y1 implies that b is determinded by

b =
1

2
G0

"
1

1680
fF 2g~z~zy

8
1�

1

420
fAFg~z~zy

7
1+

1

360
fA2g~z~zy

6
1

#
�
1

6
Q~z~zy

3
1�

1

2
C~zy

2
1+f
=kg~zy1 : (4:23)

In region IIIa we again have (2.7a) and after substituting in and integrating once we �nd that

v =
1

2
G0

"
1

1680
fF 2g~z~zy

8�
1

420
faFg~z~zy

7+
1

360
fa2�2bFg~z~zy

6+
1

60
fabg~z~zy

5+
1

24
fb

2
g~z~zy

4

#
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�
1

6
c~z~zy

3 �
1

2
d~zy

2 � e~zy + f(~z; ~t) ; (4:24)

whilst matching with the vertical velocity in the core at y2 determines f ;

f =
1

2
G0

"
1

1680
fF 2g~z~zy

8
1�

1

420
fAFg~z~zy

7
1+

1

360
fA2g~z~zy

6
1

#
�
1

2
G0

"
1

1680
fF 2g~z~zy

8
2�

1

420
faFg~z~zy

7
2

+
1

360
fa2 � 2bFg~z~zy

6
2 +

1

60
fabg~z~zy

5
2 +

1

24
fb

2
g~z~zy

4
2

#
+ f
=kg~z(y1 � y2)�

1

6
Q~z~zy

3
1 �

1

2
C~zy

2
1

+
1

6
c~z~zy

3
2 +

1

2
d~zy

2
2 + e~zy2 : (4:25)

The �nal boundary condition we have to satisfy from (2.8) is v = 0 at y = q and this implies

that

0 =
1

2
G0

"
1

1680
fF 2g~z~z�

1

420
faFg~z~zq

7+
1

360
fa2�2bFg~z~zq

6+
1

60
fabg~z~zq

5+
1

24
fb

2
g~z~zq

4

#

�
1

6
c~z~zq

3 �
1

2
d~zq

2 � e~zq + f : (4:26)

We now have seven equations (4.3, 4.8-9, 4.16-17, 4.21 and 4.26) which relate the eight unknowns

(A, F , C, Q~z,y1, y2, 
 and k). If we can determine a solution at an initial time location we can
then use the phase conservation equation

@k

@~t
+
@


@~z
= 0 ; (4:27)

to march the solution forwards in time.

5 Numerical Solutions

In this section we explain the numerical method used to obtain solutions of the system of

equations derived in the last section and we consider results for a variety of di�erent outer

channel walls and initial wavenumber distributions, k(~z; ~t = 0).

If we rescale A, y1 and y2 by writing

A = qF ~A ; y1 = q~y1 ; y2 = q~y2 ; (5:1)

we �nd that equations (4.3,8,9) become

k4

G0q3F 2
= ~y1( ~A� ~y1)( ~A� 2~y1) ; (5:2)

0 = �(1� ~y2)
2 +

(1 � ~y2)~y
1

2

1 ( ~A� ~y1)
1

2 ( ~A� 2~y1)

[2~y2( ~A� 2~y1)� ~y1( ~A� 3~y1)]
1

2
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+~y
1

2

1 ( ~A� ~y1)
1

2 [2~y2( ~A� 2~y1)� ~y1( ~A� 3~y1)]
1

2 ; (5:3)

( ~A� 2~y2) =
~y
1

2

1 ( ~A� ~y1)
1

2 ( ~A� 2~y1)

[2~y2( ~A� 2~y1)� ~y1( ~A� 3~y1)]
1

2

: (5:4)

We can introduce the variable � = k4=(G0q
3F 2) and then solve for ~A, ~y1, ~y2 and their derivatives

numerically. We do this by taking an initial guess at ~y1 (for a given �) so that (5.2) is a quadratic

in ~A. After solving this we then solve the square of (5.4) which is a cubic for ~y2 and substitute

our answers into (5.3) to check if we need to iterate on our choice of ~y1. Obviously there are six

possible sets of answers but we �nd that only one set is permissible (both ~y1 and ~y2 real with

0 < ~y1; ~y2 < 1 and ~y2 > ~y1). We plot ~A, ~y1 and ~y2 along with their �rst and second derivatives

(as these will be needed for our further calculations) in Figures 2-7. Numerically we �nd that

a solution exists for � greater than zero and less than approximately 0.104 . The lower limit

corresponds to the core occupying the entire channel and the upper limit occurs when ~y1 and
~y2 coalesce and the core region disappears. However, we note that there may be some error in
the value of this upper limit as the solution becomes extremely di�cult to follow numerically
in this region because of the rapid changes in the derivatives.

If we know the distribution of k at an initial time and also F and its �rst derivative at

some ~z location we can use equation (4.21) to determine the unknown Q~z. Upon substitution
equation (4.21) becomes

Q~z =
2

[(q � y2)2 � y21]

"
�
G0

2

�
1

210
fF 2g~z(y

6
2[7q�6y2]�q

7)�
1

60
faFg~z(y

5
2[6q�5y2]�q

6)

+
1

60
f(a2 � 2bF )g~z(y

4
2[5q � 4y2]� q5) +

1

12
fabg~z(y

3
2[4q� 3y2]� q4) +

1

6
fb

2
g~z(y

2
2[3q � 2y2]� q3)

�

�
1

2
(q � y2)

2~c~z �
G0

2

�
1

35
fF 2g~zy

7
1 �

1

12
fAFg~zy

6
1 +

1

15
fA2g~zy

5
1

�#
; (5:5)

where for convenience we have introduced

~c = c�Q : (5:6)

We can then determine the unknown C from (4.16) and the frequency 
 from (4.17). Finally

after lengthy substitution we can determine the second derivative of F from the �nal boundary

condition, (4.26), and thus obtain a full solution of our equations at an initial time location.
This solution is then marched forward in time by using the phase conservation equation, (4.27).
We note that (5.5) implies that a singular solution will occur for Q~z when y1 = (q � y2) but,

this only happens when � = 0 (see Figure 2) and so will not concern us.

We now consider some speci�c functions for the outer wall, q, and determine in particular
the e�ect they have on the vortex wavenumber. For all of these calculations we shall take

G0 = 1 and assume that F (~z = 0) = 1, F~z(~z = 0) = 0. Obviously there is a virtually in�nite
choice of outer walls and initial wavenumber distributions and our numerical work here only

covers a few of these. The particular cases we highlight here are relatively simple ones and

have been chosen in an e�ort to display the e�ects that individual features have. We have
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concentrated on variations in the outer wall as opposed to variations in the distribution of

the wavenumber at ~t = 0 (which we have taken to be constant in all of these cases) because

the wall geometries we consider cause the wavenumber distribution to become non{constant

anyway. We were also particularly interested in the e�ect that the geometry of the channel has

on the observed wavenumber.

The �rst case we considered was that where there is a slight increase in the width of the

channel. The function q was de�ned as

q = 1:15 ; ~z < 10:0 and q = 1:2 � 0:05e�(~z�10)
3

; ~z > 10:0 ; (5:7)

and is shown in Figure 8 along with the extent of the core region for an initial distribution of

the wavenumber k(~z; ~t = 0) = 0:5 . In Figure 9 we plot the value of the wavenumber at time

intervals of ~t = 125; 000. The expansion of the channel causes the wavenumber to increase before

the expansion and decrease after it. As time passes the e�ect of the change in the channel width

on the wavenumber is felt both further upstream and downstream in the spanwise direction but
we note that the wavenumber changes very slowly in time. The changes in the wavenumber
are insu�cient to produce a change in the core position that would be graphically noticeable

on Figure 8. These results plus further unplotted ones and a consideration of @
=@~z values
suggest that the wavenumber eventually settles down to a di�erent steady state.

The second case we considered was that of a constriction of the channel with the function
q now given by

q = 1:1 ; ~z < 10:0 and q = 1:0 + 0:1e�(~z�10)
3

; ~z > 10:0 : (5:8)

See Figure 10 for a plot of this and the position of the core, where we have again choosen an
initial distribution of the wavenumber k(~z; ~t = 0) = 0:5. In Figure 11 we show the value of the

wavenumber at ~t = 125; 000 and ~t = 250; 000 for this case. A constriction of the channel has
the opposite e�ect to an expansion with the wavenumber decreasing before the change in the
channel width and increasing afterwards. The other point to be noted from this case is that
a larger change in the channel width (0.1 as opposed to 0.05 for the expansion of the channel
that we looked at) has produced a larger and quicker change in the wavenumber.

A more interesting case to consider is that where the outer wall of the channel is a periodic
function. For this we have considered

q = 1:8 ; ~z < 10:0 and ~z > 10:0 + 4� ;

q = 1:775 + 0:05 cos(~z � 10) � 0:025 cos2(~z � 10) ; 10:0 < ~z < 10:0 + 4� ; (5:9)

so that the �rst and second derivatives of q are continuous throughout the range of ~z that we
consider. Figure 12 shows the channel and core position for this wall function and, again, a
distribution of k = 0:5 at ~t = 0. We note that the top edge of the core is su�ciently close to the

wall to not be visible in this graph and also that the position of the core continues to change

for values of ~z considerably greater than that at which changes to the channel wall stop. The

value of y2, the lower edge of the core region, eventually settles at about 0.931. In Figure 13 we

have plotted the wavenumber at ~t = 4; 000 and ~t = 8; 000. The wavenumber is again changing
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slowly in time and we also note that in the spanwise direction it soon returns to its initial value

after the channel wall stops altering. These results bring up the interesting possibility of some

complicated wall variation having a small e�ect on the vortex wavenumber itself (and only close

to the position of the variations) but a much larger inuence on the vortices through its e�ect

on the position of the core region, maybe even leading to the core region being pinched out of

existence at a location some distance downstream (in the spanwise direction) from the changes

in the channel geometry.

Further investigations show that the disappearance of vortex activity altogether through

the narrowing of the core region is possible but this will probably occur close to the area where

the wall alters. If we change the initial distribution of the wavenumber to k = 0:70 we �nd (see

Figure 14) that although we end up with a narrower core region the changes in the position of

this core region stop not long after the area of wall variation is passed. Increasing the initial

value of the wavenumber further to k = 0:7092 results in the core region of vortex activity being

extinguished, Figure 15, but this occurs just after the region where the outer wall is periodic.

6 Conclusions

In this paper we have considered the problem of wavenumber selection for small{wavelength
G�ortler vortices in a curved channel ow. Following an analysis similar to that of Hall & Lakin
(1988) but with modi�cations for the ow being in a curved channel and the vortex wavenumber
being dependent on slow spanwise and time scales we have obtained a system of equations which
can be solved numerically for the vortex wavenumber. Our results, contained in the previous

section, concentrate on the problem where the outer wall of the curved channel varies on the
same slow spanwise scale as the phase variable of the vortices. The reasoning behind this was a
desire to determine what e�ect wall geometries could have on the patterns of vortices observed.
Alternatively we could have considered the evolution of a system of vortices that started, for
our problem, with a non{uniform spanwise wavenumber.

The work in this paper has shown that it is possible to use phase{equation methods to
track changes in the wavenumber of G�ortler vortices. It would be desirable to extend this to
the problem of an external ow where the vortex wavenumber would be dependent on slow
time, streamwise and spanwise scales. In particular this would complement other recent studies

on G�ortler vortices in three{dimensional boundary layers which have been prompted by the

development of laminar ow control airfoils with signi�cant areas of concave curvature on the
underside of the wing near to the leading edge. Unfortunately it is not possible to consider the

current problem in an external boundary layer because the structure of equations (3.1a{d) will
not su�ce when the phase variable of the vortices is a function of the streamwise variable. So

in order to make such an extension it will be necessary to �nd an alternative system of G�ortler

vortex equations that is ameniable to asymptotic investigation. We note however, that this may
be di�cult and even for the problem considered in this paper, which is particularly receptive

to an asymptotic analysis, we end up with a complicated system of equations; the solution of
which requires quite lengthy numerical computations.
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The numerical results we have obtained suggest that the vortex wavenumber will respond

to variations in the geometry of the outer wall of the channel with small changes occuring

over quite large lengths of time. These small changes in the wavenumber cause only minor

changes in the other ow quantities as time progresses. However, more dramatic changes in

the spanwise direction for the ow outside the core (caused by the variations in the wall) can

it appears inuence the vortices. It seems that for certain initial conditions and wall variations

(see Figure 15) the core region of vortex activity can even be pinched out of existence.

Finally we compare our results with those of experimental studies on G�ortler vortex wave-

length selection. The large size of our G�ortler number makes direct comparison with experi-

mental work di�cult but it appears that this choice of G�ortler number is required in order to

make analytical progress. Our results (see Figures 9, 11 and 13) suggest that changes in the

`global' geometry of the channel will produce di�erent vortex patterns but will have very little

e�ect on the average wavenumber (and hence wavelength). This is supported by the work of

Swearingen & Blackwelder (1986); one of whose �ndings was that the average wavelength is
independent of the test section spanwise width.

The comparitively small changes to the vortex wavenumber which we have found in this
paper show the need for a theoretical investigation of wavenumber selection at the onset of
vortex instability in order to explain the large di�erences in the vortex wavelength which have

been obtained in experimental work. It was observed by Tani (1962) and Tani & Sakagami
(1964) that the vortex wavelength changed when a di�erent experimental facility was used and
it has been possible to alter the observed wavelength by the arti�cial means of the introduction
of disturbances upstream of the onset of vortex activity (see Myose & Blackwelder 1991 for
a discussion of the di�erent experiments that have been conducted). However, as pointed
out by Myose & Blackwelder (1991) the exact process of wavelength selection is not yet well{

understood. Our results here con�rm that the initial selection of the wavenumber, at the start
of vortex activity, needs theoretical consideration. Unfortunately `phase{equation' methods
would appear to be of no use in describing the e�ects of disturbances that are periodic in
the spanwise direction with spacing of the order of the wavelength of the G�ortler vortices, as
was the case for the experiments of Swearingen & Blackwelder (1986). Once this problem of

wavenumber selection near the onset of vortex activity has been tackled the phase{equation

method detailed in this paper will allow further changes in the wavenumber to be predicted.
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Figure 1. A schematic picture of the di�erent regions of the ow in the curved channel.
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Figure 2. The functions ~y1 and ~y2 which determine the boundaries of the core.
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Figure 3. The �rst derivatives of ~y1 and ~y2.
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Figure 4. The second derivatives of ~y1 and ~y2.

d2y=d�2

Figure 5. The function ~A.
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Figure 6. The �rst derivative of ~A.
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Figure 7. The second derivative of ~A.
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Figure 8. The function q from equation (5.7).
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Figure 9. The wavenumber, k, for the channel given by q from (5.7).
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Figure 10. The function q from equation (5.8).
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Figure 11. The wavenumber, k, for the channel given by q from (5.8).
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Figure 12. The function q from equation (5.9).
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Figure 13. The wavenumber, k, for the channel given by q from (5.9).
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Figure 14. The core region with q from (5.9) and k(~t = 0) = 0:70.
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Figure 15. The core region with q from (5.9) and k(~t = 0) = 0:7092.
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